34 research outputs found

    Particle and particle-like solitary wave dynamics in fluid media

    Get PDF
    This research deals with the study of various nonlinear wave processes in dispersive media by means of asymptotic methods developed upon existing exact methods in application to non-integrable systems. The aim of the research is to analyse wave models possessing solitary solutions and establish common features in the description of such solutions and classical particles. The new model equations have been derived for the description of long transverse waves propagating in the generalized atomic chain. The mathematical analogy between the model equations describing internal waves in stratified fluid (the Korteweg–de Vries and Gardner–Ostrovsky equations) and waves in discrete chain models (the generalized sine-Gordon–Toda model or Frenkel–Kontorova model) have been established. Chain models are described by sets of ODEs which can be readily solved with a high accuracy by existing well-developed solvers in mathematical software. The research includes solutions to important wave problems by means of approximate asymptotic and numerical methods. Results obtained provide an insight in understanding of details of nonlinear wave propagation in continuous and discrete media. An effective numerical code has been developed for the modeling of nonlinear phenomena both in continuous media and in the discrete models of interacting oscillators

    Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model

    Get PDF
    The precise prediction of windspeed is essential in order to improve and optimize wind power prediction. However, due to the sporadic and inherent complexity of weather parameters, the prediction of windspeed data using different patterns is difficult. Machine learning (ML) is a powerful tool to deal with uncertainty and has been widely discussed and applied in renewable energy forecasting. In this chapter, the authors present and compare an artificial neural network (ANN) and genetic programming (GP) model as a tool to predict windspeed of 15 locations in Queensland, Australia. After performing feature selection using neighborhood component analysis (NCA) from 11 different metrological parameters, seven of the most important predictor variables were chosen for 85 Queensland locations, 60 of which were used for training the model, 10 locations for model validation, and 15 locations for the model testing. For all 15 target sites, the testing performance of ANN was significantly superior to the GP model

    Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction

    Get PDF
    Solar energy predictive models designed to emulate the long-term (e.g., monthly) global solar radiation (GSR) trained with satellite-derived predictors can be employed as decision tenets in the exploration, installation and management of solar energy production systems in remote and inaccessible solar-powered sites. In spite of a plethora of models designed for GSR prediction, deep learning, representing a state-of-the-art intelligent tool, remains an attractive approach for renewable energy exploration, monitoring and forecasting. In this paper, algorithms based on deep belief networks and deep neural networks are designed to predict long-term GSR. Deep learning algorithms trained with publicly-accessible Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data are tested in Australia’s solar cities to predict the monthly GSR: single hidden layer and ensemble models. The monthly-scale MODIS-derived predictors (2003–2018) are adopted, with 15 diverse feature selection approaches including a Gaussian Emulation Machine for sensitivity analysis used to select optimal MODIS-predictor variables to simulate GSR against ground-truth values. Several statistical score metrics are adopted to comprehensively verify surface GSR simulations to ascertain the practicality of deep belief and deep neural networks. In the testing phase, deep learning models generate significantly lower absolute percentage bias (≀3%) and high Kling–Gupta efficiency (≄97.5%) values compared to the single hidden layer and ensemble model. This study ascertains that the optimal MODIS input variables employed in GSR prediction for solar energy applications can be relatively different for diverse sites, advocating a need for feature selection prior to the modelling of GSR. The proposed deep learning approach can be adopted to identify solar energy potential proactively in locations where it is impossible to install an environmental monitoring data acquisition instrument. Hence, MODIS and other related satellite-derived predictors can be incorporated for solar energy prediction as a strategy for long-term renewable energy exploration

    Designing Deep-based Learning Flood Forecast Model with ConvLSTM Hybrid Algorithm

    Get PDF
    Efficient, robust, and accurate early flood warning is a pivotal decision support tool that can help save lives and protect the infrastructure in natural disasters. This research builds a hybrid deep learning (ConvLSTM) algorithm integrating the predictive merits of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) Network to design and evaluate a flood forecasting model to forecast the future occurrence of flood events. Derived from precipitation dataset, the work adopts a Flood Index (IF), in form of a mathematical representation, to capture the gradual depletion of water resources over time, employed in a flood monitoring system to determine the duration, severity, and intensity of any flood situation. The newly designed predictive model utilizes statistically significant lagged IF, improved by antecedent and real-time rainfall data to forecast the next daily IF value. The performance of the proposed ConvLSTM model is validated against 9 different rainfall datasets in flood prone regions in Fiji which faces flood-driven devastations almost annually. The results illustrate the superiority of ConvLSTM-based flood model over the benchmark methods, all of which were tested at the 1-day, 3-day, 7-day, and the 14-day forecast horizon. For instance, the Root Mean Squared Error (RMSE) for the study sites were 0.101, 0.150, 0.211 and 0.279 for the four forecasted periods, respectively, using ConvLSTM model. For the next best model, the RMSE values were 0.105, 0.154, 0.213 and 0.282 in that same order for the four forecast horizons. In terms of the difference in model performance for individual stations, the Legate-McCabe Efficiency Index (LME) were 0.939, 0.898, 0.832 and 0.726 for the four forecast horizons, respectively. The results demonstrated practical utility of ConvLSTM in accurately forecasting IF and its potential use in disaster management and risk mitigation in the current phase of extreme weather events

    Assessment and Prediction of Sea Level Trend in the South Pacific Region

    Get PDF
    Sea level rise is an important and topical issue in the South Pacific region and needs an urgent assessment of trends for informed decision making. This paper presents mean sea level trend assessment using harmonic analysis and a hybrid deep learning (DL) model based on the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) technique, Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU) and Neighbourhood Component Analysis (NCA) to build a highly accurate sea level forecasting model for three small islands (Fiji, Marshall Island and Papua New Guinea (PNG)) in the South Pacific. For a 20-year period, the estimated mean sea level rise per year from the harmonic computation is obtained: 112 mm for PNG, 98 mm for Marshall Island and 52 mm for Fiji. The DL procedure uses climate and environment-based remote sensing satellite (MODIS, GLDAS-2.0, MODIS TERRA, MERRA-2) predictor variables with tide gauge base mean-sea level (MSL) data for model training and development for forecasting. The developed CEEMDAN-CNN-GRU as the objective model is benchmarked by comparison to the hybrid model without data decomposition, CNN-GRU and standalone models, Decision Trees (DT) and Support Vector Regression (SVR). All model performances are evaluated using reliable statistical metrics. The CEEMDAN-CNN-GRU shows superior accuracy when compared with other standalone and hybrid models. It shows an accuracy of >96% for the correlation coefficient and an error of < 1% for all study sites

    Deep Air Quality Forecasts: Suspended Particulate Matter Modeling With Convolutional Neural and Long Short-Term Memory Networks

    Get PDF
    Public health risks arising from airborne pollutants, e.g ., Total Suspended Particulate ( TSP ) matter, can significantly elevate ongoing and future healthcare costs. The chaotic behaviour of air pollutants posing major difficulties in tracking their three-dimensional movements over diverse temporal domains is a significant challenge in designing practical air quality systems. This research paper builds a deep learning hybrid CLSTM model where convolutional neural network ( CNN ) is amalgamed with the long short-term memory ( LSTM ) network to forecast hourly TSP . The CNN model entails a data processer including feature extractors that draw upon statistically significant antecedent lagged predictor variables, whereas the LSTM model encapsulates a new feature mapping scheme to predict the next hourly TSP value. The hybrid CLSTM model is comprehensively benchmarked and is seen to outperform an ensemble of five machine learning models. The efficacy of the CLSTM model is elucidated in model testing phase at study sites in Queensland, Australia. Using performance metrics, visual analysis of TSP simulations relative to observations, and detailed error analysis, this study ascertains the CLSTM model’s practical utility for air pollutant forecasting systems in health risk mitigation. This study captures a feasible opportunity to emulate air quality at relatively high temporal resolutions in global regions where air pollution is a considerable threat to public health

    Development of Flood Monitoring Index for daily flood risk evaluation: case studies in Fiji

    Get PDF
    Both fluvial and pluvial floods are a common occurrence in Fiji with fluvial floods causing significant economic consequences for island nations. To investigate flood risk and provide a mitigation tool on daily basis, the Flood Index (IF) is developed based on the rationale that the onset and severity of an event is based on current and antecedent day’s precipitation. This mathematical methodology considers the notion that the impact of daily cumulative precipitation on a particular flood event arising from a previous day’s precipitation, decreasing gradually over time due to the interaction of hydrological factors (e.g., evaporation, percolation, seepage, surface run-off, drainage, etc.,). These are accounted for, mathematically, by a time-reduction weighted precipitation influencing the magnitude of IF. Considering the duration, severity and intensity of all identified events, the applicability of IF is tested at 9 study sites in Fiji using 30-year precipitation datasets (1990–2019) obtained from Fiji Meteorological Services. Newly developed IF is adopted at flood prone sites, with results demonstrating that flood events were common throughout the country, mostly notable between November to April (or the wet season). Upon examining the variations in daily IF, the flood properties were determined, showing that the most severe events generally started in January. Flood events with the highest severity were recorded in Lautoka [IaccF (flood severity) ≈149.14, ImaxF (peak danger) ≈3.39, DF (duration of flood) ≈151days, tonset (onset date) =23rdJanuary2012], followed by Savusavu (IaccF≈141.65,ImaxF≈1.75,DF≈195days,tonset=27thNovember1999) and Ba (IaccF≈131.57,ImaxF≈3.13,DF≈113days,tonset=9thJanuary2009). The results clearly illustrate the practicality of daily IF in determining the duration, severity, and intensity of flood situation, as well as its potential application to small island nations. The use of daily IF to quantify flood events can therefore enable a cost-effective and innovative solution to study historical floods in both developing and first world countries. Our methodology is particularly useful to governments, private organizations, non-governmental organizations and communities to help develop community-amicable policy and strategic plans to prepare for flood impacts and undertake the necessary risk mitigation measures

    Deep Multi-Stage Reference Evapotranspiration Forecasting Model: Multivariate Empirical Mode Decomposition Integrated With the Boruta-Random Forest Algorithm

    Get PDF
    Evapotranspiration, as a combination of evaporation and transpiration of water vapour, is a primary component of global hydrological cycles. It accounts for significant loss of soil moisture from the earth to the atmosphere. Reliable methods to monitor and forecast evapotranspiration are required for decision-making. Reference evapotranspiration, denoted as ET , is a major parameter that is useful in quantifying soil moisture in a cropping system. This article aims to design a multi-stage deep learning hybrid Long Short-Term Memory (LSTM) predictive model that is coupled with Multivariate Empirical Mode Decomposition (MEMD) and Boruta-Random Forest (Boruta) algorithms to forecast ET in the drought-prone regions ( i.e ., Gatton, Fordsdale, Cairns) of Queensland, Australia. Daily data extracted from NASA’s Goddard Online Interactive Visualization and Analysis Infrastructure (GIOVANNI) and Scientific Information for Land Owners (SILO) repositories over 2003–2011 are used to build the proposed multi-stage deep learning hybrid model, i.e ., MEMD-Boruta-LSTM, and the model’s performance is compared against competitive benchmark models such as hybrid MEMD-Boruta-DNN, MEMD-Boruta-DT, and a standalone LSTM, DNN and DT model. The test MEMD-Boruta-LSTM hybrid model attained the lowest Relative Root Mean Square Error (≀17%), Absolute Percentage Bias (≀12.5%)and the highest Kling-Gupta Efficiency (≄0.89%) relative to benchmark models for all study sites. The proposed multi-stage deep hybrid MEMD-Boruta-LSTM model also outperformed all other benchmark models in terms of predictive efficacy, demonstrating its usefulness in the forecasting of the daily ET dataset. This MEMD-Boruta-LSTM hybrid model could therefore be employed in practical environments such as irrigation management systems to estimate evapotranspiration or to forecast ET

    Near real-time global solar radiation forecasting at multiple time-step horizons using the long short-term memory network

    Get PDF
    This paper aims to develop the long short-term memory (LSTM) network modelling strategy based on deep learning principles, tailored for the very short-term, near-real-time global solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation function is applied to the high resolution, 1 min scaled solar radiation dataset that generates statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh, Vietnam) against the competing counterpart methods employing other deep learning, a statistical model, a single hidden layer and a machine learning-based model. The LSTM model generates satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding 0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to generate reliable GSR forecasts. The Diebold–Mariano statistic test also shows LSTM outperforms the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro and wind energy)

    Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations and Synoptic-Scale Climate Index Data

    Get PDF
    Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management
    corecore